Received: May 7, 1986; accepted July 6, 1986

¹⁷0 AND ¹³C NUCLEAR MAGNETIC RESONANCE STUDY OF POLYFLUORINATED CARBONYL COMPOUNDS

BERND WRACKMEYER*

Laboratorium fiir Anorganische Chemie Universität Bayreuth Postfach 10 12 51 D-8580 Bayreuth (F.R.G.)

KONRAD VON WERNER and FRANK WEHOWSKY Hoechst AG, Werk Gendorf D-8269 Burgkirchen (F.R.G.)

SUMMARY

 δ^{17} O- and δ^{13} C values are reported for 15 polyfluorinated carbonyl compounds. If the R_f group is separated from the carbonyl group by less than two carbon atoms a marked increase in the nuclear shielding of $13C(C=0)$ and a marked decrease in the nuclear shielding of the 170 (C=O) nucleus is observed. This is ascribed to the differing effects of the R_f group on the σ and the π system of the carbonyl unit. The effect on the σ -manifold leads to increase in shielding but it may be offset (as in the case of the 170 nucleus) by destabilization of the π system. WV spectroscopic data for some polyfluorinated carbonyl compounds support these arguments.

* Author to whom correspondence should be addressed.

0022-l 139/87/\$3.50 0 Elsevier Sequoia/Printed in The Netherlands

INTRODUCTION

The electronic structure of carbonyl compounds is of prime interest for many different lines of research. Therefore, the investigation of spectroscopic properties of the C=O bond has been a major object for many years [1]. Our current interest in the influence of polyfluorinated alkyl groups upon NMR spectroscopic parameters [2,3] prompted us to study polyfluorinated carbonyl compounds by $17_{\text{O}-}$ and 13_{C} NMR. The 13_{C} NMR measurements are continuing a previous more general study $[2]$ whereas 17 O NMR for this type of compounds is studied in a systematic way for the first time. Thus far, some 17 O-chemical shifts (\mathcal{O}^{17} O) have been reported for pentafluorophenyl carbonyl compounds [4], and a few other data are scattered in the literature [5]. The comparison of the δ^{17} O values

$$
C_6F_5-C_{R}^{\prime0}
$$
 R $\Delta^{17}C_{14}$ $\begin{array}{|c|c|c|c|}\n\hline\nR & He & CF_3 & Cl & OMe \\
\hline\n612 & 615 & 627 & 552 & 379 \\
\hline\n(C=0) & & Cl & Cl & OMe\n\end{array}$

for the pentafluorophenyl carbonyl compounds with those of their hydrocarbon analogues shows the deshielding influence of the C_6F_5 group [4].

The effect of perfluoroalkyl groups $(R_f$ effect) on unsaturated linkages was found to be thermodynamically destabilizing. Thus, it was concluded that the enormous thermal stability of many perfluorinated compounds is completely kinetic in nature $[6,7]$. From the spectroscopic point of view the changes in the electronic structure induced by the R_f group are important. The electron withdrawing power (-I effect) of the R_f group is expected to stabilize σ -orbitals (including n-orbitals). However, π -orbitals may be destabilized owing to the repulsing effects of the fluorine non-bonding electrons $[8]$. In order to shed some light on these problems we have selected different types of carbonyl compounds with the structures $\underline{\mathbf{A}}$, $\underline{\mathbf{B}}$, $\underline{\mathbf{C}}$.

These should allow to study the influence of the R_f group on the $17_{\text{O}-}$ and $13_{\text{C}-\text{chemical shifts}}$.

$$
R_{f} - C \zeta^{0} \qquad R_{f} - \frac{1}{C} - C \zeta^{0} \qquad R_{f} - \frac{1}{C} - \frac{1}{C} \zeta^{0}
$$
\n
$$
\frac{1}{2} \qquad \frac{1}{2} \qquad \frac{1}{2} \qquad \frac{1}{2}
$$
\n
$$
\frac{1}{2} \qquad \frac{1}{2} \qquad \frac{1}{2} \qquad \frac{1}{2}
$$
\n
$$
\frac{1}{2} \qquad \frac{1}{2} \qquad \frac{1}{2} \qquad \frac{1}{2}
$$

RESULTS AND DISCUSSION

Table 1 collates δ^{17} and δ^{13} C data together with chemical shift differences (Δ^{17} 0, Δ^{13} C) with respect to the corresponding hydrocarbon analogues. The inspection of the 3^{17} O and 3^{13} C data for the C=O group shows that the shielding of the 13_C -nucleus increases markedly in the presence of an R_f group (type \underline{A} or \underline{B}), whereas the shielding of the 17 O-nucleus decreases. In general these effects are more pronounced for type \underline{A} (1-2) than for type \underline{B} (10-14). In type C (15) the influence of the R_f group is very small, both on $\dot{\mathcal{O}}^{13}$ C and $\dot{\mathcal{O}}^{17}$ O, as expected from previous observations $[2,3]$ It also appears that the effects of the R_f group is compensated to some extent in the carboxylic acids, esters and in the amide $(8, 14, 16)$ 2, 12, 2) as compared to the aldehydes, ketones and halides. The additivity of the effects exerted by the R_f groups is shown by the Δ^{13} C and Δ^{17} O values for compound 4.

Various models have been developed to understand the 13 C-nuclear shielding of carbonyl compounds [9]. From solid state NMR measurements it is known that the principal axis corresponding to the largest paramagnetic shift is parallel to the C=O bond and the largest diamagnetic shift is perpendicular to the $\big)$ C=O plane[1o]. Recently, the same picture has been established experimentally for 17 _O-nuclear shielding in benzophenone [11]. Clearly, this implies

Footnotes to Table 1

- In 10 mm (o.d.) tubes; 13 C NMR at 27 28^oC; chemical shift differences with respect to the hydrocarbon analogues are given in parentheses.
- b The accuracy of the δ^{17} O values depends on the line widths h1/2: $+$ 1 ppm (h1/2 \leq 300 Hz), $+$ 3 ppm (h1/2 \leq 600 Hz), $+$ 5 ppm (h1/2 \leq 60 Hz).
- $\mathbf C$ For typical $\delta^{13}C(R_f)$ values see Ref [2].

 $1_J(13_C1_H) = 200.3 Hz + 1.$ d,

- e Estimated values from data for closely related compounds.
- f $J({}^{13}C_{H}) = 187.$ o Hz ± 1 .
- $g = 1_J(13_C1_H) = 177.4$ Hz +1.

that magnetic field (B_{ρ}) induced paramagnetic charge circulations involving the oxygen lone electron pair control a large part of the isotropic values δ^{13} C(C=O) and δ^{17} O(C=O). Although there is a parallel trend for δ^{13} C and δ^{17} O values in most carbonyl compounds, it is difficult to predict changes in the anisotropic shielding tensors. Therefore, the participation of the oxygen lone electron pair in the changes of δ^{13} C and δ^{17} O values is not obvious.

Considering solely the δ^{13} C and δ^{17} O values for the compounds 1-15 the changes in δ^{13} C and δ^{17} O values are similar to those for other carbonyl compounds $[9,5]$, especially if we look at the δ^{13} c, δ^{17} o values for 2, 6, 7, 9 or for 10, 11, 13. However, it is unusual to find a marked shielding of the ''C(C=O) nucleus and, at the same time, a considerable deshielding of the 17 O nucleus by introducing a new substituent, in our case by replacing R with R_f .

It has been shown that the isotropic nuclear shielding of $^{13}C(C=0)$ and $17₀(C=0)$ increases with gain in electronic charge on both nuclei (in contrast to $^{13}C(sp^3)$ and to two-cordinate oxygen) $[12]$. The discrepancy with the behaviour of \mathcal{O}^{13} C(sp³) arises because of the inverse changes of σ - and π electron densities in many π systems $\lceil 12 \rceil$. In the case of the polyfluorinated carbonyl compounds the R_f group is expected to reduce the electron population at the 13 C(C=O) nucleus, both by σ and π effects. The importance of the σ effects for \mathcal{S}^{13} C has been noted $[12]$, and the observed increase in nuclear shielding of 13 C(C=O) in $1-14$ (with respect to the hydrocarbon analocues) is in accord with the analysis of the electron population in the C=O bond. In the absence of other influences a shielding effect of the R_f group on the 17 0(C=0) nucleus would also be expected. However, the σ effect of the R_f aroup may be offset by the possible interaction between the Eluorine lone electron pairs and the antibonding $C=O$ π ^{*}orbital $[13]$. This may be particularly important for the $17₀(C=0)$ resonance since the σ effect of the R_f group will be somewhat attenuated by the intervening carbonyl carbon atom (e.g. in type \underline{A}).

These qualitative arguments are corroborated by UV spectroscopic data (Table 2) of some polyfluorinated carbonyl compounds. The absorption band at lonqest wave length (small extinction), usually *assiqned* to the n $*\pi^*$ transition, is slightly shifted to longer wave lengths with respect to the hydrocarbon analogues, in agreement with other observations $[14]$. This proves the complex influence of the R_f group on the C=O bond. Clearly, there is considerable delocalization of the oxygen lone electron pair and a direct relationship between λ_{\max} (n- π) and δ^{17} 0 would be fortuitous. On the other hand, the fairly small effect of the R_{ϵ} group (with respect to R) on the UV absorption bands in the region between ca. 190-300 nm may be regarded as an

ΔB. I u	
---------------	--

UV Spectroscopic Data for some R_f Carbonyl Compounds a

a Extinction ϵ < 20; absorption bands assigned to π ^{*} transitions are observed at $\lambda_{\text{max}} = 219$ ($\epsilon = 242$) ($\underline{10}$) and at $\lambda_{\text{max}} < 200$ for the other compounds.

 b Ref. $[14]$.</sup>

 c The n+ π^* absorption band is partially hidden by the long wave shoulder of the intense π ^{*} absorption band.

indication for the proposed different influence of the R_f group on the σ - and π system of the C=O bond. Recent work (¹⁵N, ¹⁷O NMR) on N-sulphinyl-polyfluoroarylamines [IS) has led to similar conclusions.

Finally, a comparison between δ^{13} C of alkenes and δ^{13} C, δ^{17} O of carbonyl compounds should help to assess the influence of the oxygen lone electron pair on changes in $\dot{\delta}^{17}$ 0. In principle the nuclear shielding of $17₀$ and 13_C should be related by the ratio of the radial expansion terms $\langle r^{-3}_{2n} \rangle$ for both nuclei, assuming the dominance of the local paramagnetic term, $\sigma_{\rm p}^{\rm loc}$, in Pople's approximation [16]. This will be the case if the shielding of both nuclei is controlled by the same effects. Then the ratio of Δ^{17} 0/ Δ^{13} C should correspond to the ratio of $\left\langle r^{-3}_{2p}\right\rangle_{0}/\left\langle r^{-3}_{2p}\right\rangle_{0}$ which is in the order of 3 to 4 $\lceil 17 \rceil$:

The examples available show the parallel trend in the change of \mathcal{S}^{13} C and \mathcal{S}^{17} O in the carbonyl compounds and alkenes upon introduction of the R_f group. Furthermore,the ratio A¹⁷O/A¹³C(=CH₂) is close to the ratio predicted by theory. That indicates a small influence of the oxygen lone electron pair on the changes in the 17 O-nuclear shielding induced by the R_f group.

EXPERIMENTAL

The NMR spectra (13 C, 17 O) have been recorded with a Bruker WP 200 spectrometer (see Table 1). 17 O NMR spectra of concentrated solutions (ca. 50-60 %) were obtained after 10^4 to 10^5 scans (acquisition time $ca.$ 0.02 s, pulse angle $ca.$ $70^{\circ} = 35 \mu s$). A fairly straight base line was observed when a pre-acquisition delay of 35 to 80 μ s was used. The UV spectra have been measured with a Perkin-Elmer Lamda-5 spectrophotometer.

The aldehyde 1 has been obtained from perfluoroheptanyl chloride by Rosenmund reduction, followed by purification through a slot tube column. The ketones 2 and 2 have been prepared in moderate yields by slowly adding an ether solution of methyl- or phenyl magnesium bromide, respectively, to perfluoroheptanoyl chloride in ether at -20° C. The compounds $6, 7, 9$, and 13 were prepared by standard procedures. Compound 12 has been obtained by photobromination of 2-perfluorohexyl-ethanol, similarly to the preparation of the corresponding acid chloride 11 (c.f. [18]). A hydroformylation reaction of 1.1.2-trihydro-I-perfluorooctene in benzene (cata $lyst:[Rh(CO)H(PPh_3)_{3}]$; 2h, 80°C; p(CO) = p(H₂) = 40 bar) yielded after distillation the aldehydes 14 (54%, b.p. 45-47[°]/13 mbar) and $\frac{15}{2}$ (32%, b.p. 65-67 $^\circ$ /15 mbar). The aldehyde $\frac{15}{2}$ is the major product in the cobalt-catalyzed hydroformylation (c.f. [18]). The compounds $4, 5$, and 11 have been prepared according to literature procedures[18]

ACKNOWLEDGMENT

We thank the Deutsche Forschungsgemeinschaft and the Fond der Chemischen Industrie for support of this work.

REFERENCES

- **1** Some recent references on 17 0 NMR of carbonyl compounds:
	- a) J.K. Crandall, M.A. Centeno, and S.Børresen, J.Org.Chem. 44 (1979) 1186.
	- b) G.A. Olah, P.S. Iyer, and G.K.S. Prakash, J.Am.Chem.Soc. 104 (1982) 2273.
	- c) E. Lipczynska-Kochany and H. Iwamura, J.Org.Chem. 47 (1982) 5277 -
	- d) T.C. Wong, F.S. Guziec, Jr., and C.A. Moustakis, J.Chem.Soc. Perkin Trans. II, (1983) 1471.
	- e) F. Orsini and G.S. Ricca, Org.Magn.Reson. 22 (1984) 653.
	- f) P. Balakrishnan, A.L. Baumstark, and D.W. Boykin, Org.Magn. Reson. 22 (1984) 753.
	- g) S. Chandrasekaran, W.D. Wilson, and D.W. Boykin, Org.Magn.Reson. 22 (1984) 757. -
	- h) R.E. Wasilishen, S. Mooibroek, and J.B. Macdonald, J.Chem. Phys. 81 (1984) 1057. -
	- i) L. Baltzer and E.D. Becker, J.Am.Chem.Soc. 105 (1983) 5730. -
	- j) G.A. Olah, P.S. Iyer, G.K.S. Prakash, and V.V. Krishnamurthy, J.Org.Chem. 49 (1984) 4317.
	- k) R.N. Hunston, I.P. Gerothanassis, and J. Lauterwein, J.Am. Chem.Soc. 107 (1985)2654.
	- 1) V.V. Lapachev, I.Ya. Mainagashev, S.A. Stekhova, M.A. Fedotov, V.P. Krivopalev, and V.P. Mamaev, J.Chem.Soc.Chem.Commun. (1985) 494.
	- m) P. Ruostesuo, A.M. Hlkkinen, and K. Peltola, Spectrochim. Acta, 41 A (1985) 739.
- 2 K. von Werner and B. Wrackmeyer, J.Fluorine Chem. 19 (1981) 163. **3** K. von Werner and B. Wrackmeyer, J.Fluorine Chem. 31 (1986) 183.
- **4** G.G. Furin, A.I. Rezvukhin, M.A. Fedotov, and G.G. Yakobson, J.Fluorine Chem. 22 (1983) 231.
- **5** J.P. Kintzinger, in'NMR - Basic Principles and Progress' (P. Diehl, E. Fluck, R. Kosfeld, Editors) Springer Verlag, Berlin, 1981, Vol. **17,** p. 1 - **64.**
- D.M. Lemal and L.H. Dunlap, Jr., J.Am.Chem.Soc. <u>94</u> (1972) 6562. **6**
- **7** A. Greenberg, J.F. Liebman, and D. van Vechten, Tetrahedron, 36 (1980) 1161. -
- 8 J.F. Liebman, P. Politzer, and D.C. Rosen, in Applications of Atomic Electrostatical Potentials to Chemistry' (P. Politzer, D.M. Truhlar, Editors), Plenum Press, New York, 1981.
- **9** J.B. Stothers, 'Carbon-13 NMR Spectroscopy,' Academic Press, New York, 1972, p. 279-306.
- **10** M. Mehring, 'Principles of High Resolution NMR in Solids', Springer Verlag, Berlin, 1983, p. 250-257.
- **11** W. Scheubel, H. Zimmermann, and U. Haeberlein, J.Magn.Reson. 63 (1985) 544. -
- 12 M.-T. Beraldin, E. Vauthier, and S. Fliszar, Can.J.Chem. 60 (1982) 106.
- **13** R. Hoffmann, L. Radom, J.A. Pople, P.R. v.Schleyer, W.J. Hehre, and L. Salem, J.Am.Chem.Soc. 94 (1972) 6221.
- **14** V.A. Petukhov and A.A. Glazkov, Izvest.Akad.Nauk.SSSR, Ser. Khim. (1984) 1422.
- **15** G.G. Furin, M.A. Fedotov, G.G. Yakobson, and A.V. Zibarev, J.Fluorine Chem. 28 (1985) 273.
- **16** J.A. Pople, Mol.Phys. 7(1963-64) 301; Discuss.Farad.Soc. $\underline{34}$ (1962) 7.
- 17 a)C. Delseth and J.P. Kintzinger, Helv.Chim.Acta, 61 (1978) 1327. b)J.K. Crandall and M.A. Centeno, J.Org.Chem. 44 (1979) 1183.
- **18 4,** Ya.M. Vilenchik, V.A. Soshin, L.M. Novoselitskaya, G.I. Lekontseva, and P.G. Neifeld, Zh.Vses.Khim.Obshch. 23 (1978) 236.
	- 2, M. Hauptschein, C.L. Parris, and M. Plains (Pennsalt C-C.) German Patent 1 211 619 (1966).
	- 11, H. Bathelt (Hoechst AG), German OS 2 558 728 (1977).
	- 15 F. Röhrscheid (Hoechst AG), German OS 2 163 752 (1980).